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Drag and lift forces acting on a spherical water droplet in a homogeneous linear shear
air flow were studied by means of a three-dimensional direct numerical simulation
based on a marker and cell (MAC) method. The effects of the fluid shear rate and
the particle (droplet) Reynolds number on drag and lift forces acting on a spherical
droplet were compared with those on a rigid sphere. The results show that the drag
coefficient on a spherical droplet in a linear shear flow increases with increasing the
fluid shear rate. The difference in the drag coefficient between a spherical droplet and
a rigid sphere in a linear shear flow never exceeds 4 %. The lift force acting on a
spherical droplet changes its sign from a positive to a negative value at a particle
Reynolds number of Rep � 50 in a linear shear flow and it acts from the high-speed
side to the low-speed side for Rep � 50. The behaviour of the lift coefficient on a
spherical droplet is similar to that on a stationary rigid sphere and the change of sign
is caused by the decrease of the pressure lift. The viscous lift on a spherical droplet is
smaller than that on a rigid sphere at the same Rep , whereas the pressure lift becomes
larger. These quantitative differences are caused by the flow inside a spherical droplet.

1. Introduction
The dispersion phenomena of water droplets are often seen in environmental flows

with rainfall, clouds, mist, sea spray and so on. It is important to estimate precisely the
heat and mass transfer across the air–water interface of a water droplet such as a rain-
drop falling in the atmosphere or a dispersed droplet over the air–sea interface with
intensive wave breaking in developing a reliable climate model. In order to estimate
such heat and mass transfer, we have to understand the motions outside and inside a
water droplet and the effects of mean shear on fluid forces acting on a water droplet.

When a rigid sphere or a fluid sphere is moving in a shear flow, transverse force
is exerted as lift force. According to the inviscid and low-Reynolds-number theories,
the lift force acts from the higher fluid velocity side to the lower velocity side
(Saffman 1965; Auton 1987; Dandy & Dwyer 1990; McLaughlin 1993). Komori &
Kurose (1996) and Kurose & Komori (1999) first performed three-dimensional direct
numerical simulation for the flow field outside a rigid sphere in the range of particle
Reynolds numbers of Rep = 1–500. Here, Rep is defined by Ucd/ν, where d is the
diameter of a sphere, Uc the fluid velocity on the streamline through the centre of a
sphere and ν the kinematic viscosity. They found that the direction of the lift force
acting on a stationary rigid sphere at higher Rep is opposite to that predicted by the
inviscid and low-Reynolds-number theories. The same behaviour of the lift force on a
stationary rigid sphere was also reported in the direct numerical simulation (DNS) of
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Bagchi & Balachandar (2002). On the other hand, the shear lift force on a bubble for
high particle Reynolds numbers has been discussed in numerical simulations. Mei &
Klausner (1994) obtained an expression of the lift force on an inviscid sphere, i.e.
a fluid sphere with non-viscous internal flow, in a linear shear flow by combining
the three results for a rigid sphere in a viscous flow obtained by the linear analysis
by Saffman (1965), the DNS of Dandy & Dwyer (1990) and the analytical solution
of McLaughlin (1993) with the analytical results for a sphere in an inviscid flow
obtained by Auton (1987). Legendre & Magnaudet (1998) and Kurose, Misumi &
Komori (2001) also computed the lift force acting on an inviscid sphere in a viscous
flow by using DNSs.

In those previous studies, only the flow field outside a rigid sphere or an inviscid
sphere has been considered in a uniform shear flow. However, in the case of a fluid
sphere such as a spherical droplet, it is necessary to consider the flow fields both
outside and inside a fluid sphere. For a uniform unsheared creeping flow (Rep � 1),
the flow fields outside and inside a spherical droplet have been analysed by the
Hadamard–Rybczynski solution (see Clift, Grace & Weber 1978). For moderate and
high particle Reynolds numbers (Rep > 1), drag coefficient on a droplet in a uniform
unsheared flow was estimated only by experiments (Gunn & Kinzer 1949; Beard &
Pruppacher 1969), and it was observed that circulating flows inside a spherical droplet
are generated by the viscous stress on the surface of a droplet. However, the details
of the flow fields outside and inside a droplet have not been clarified. On the other
hand, the numerical studies on a spherical droplet for moderate particle Reynolds
numbers (Rep > 1) are limited (LeClair et al. 1972; Chen 2001). In these studies, the
flow fields outside and inside a semicircular droplet were computed under the coarse
assumption that flow fields outside and inside a spherical droplet were axisymmetric.
However, when vortex shedding appears behind a rigid sphere in a uniform flow in
the high-Reynolds-number range, flow structure around a rigid sphere is far from
axisymmetric. Therefore, previous numerical studies on a spherical droplet under the
coarse assumption of axis-symmetry are not suitable. In previous numerical studies
on the dispersion of droplets in the air flow, the assumption that fluid forces on a
spherical droplet for moderate Rep can be approximated by those on a rigid sphere
has also been used. However, this assumption has not been verified, since the effect
of the flow inside a spherical droplet in a linear shear flow on the fluid forces has
not been investigated. Thus, the mean shear effects on the drag and lift forces on a
spherical droplet in a shear flow have not been clarified.

The purpose of this study is, therefore, to investigate the effects of the fluid shear on
drag and lift forces acting on a spherical water droplet in a viscous linear shear air flow
for moderate and high particle Reynolds numbers by applying a three-dimensional
direct numerical simulation to flows both inside and outside a droplet, and to clarify
the difference in the generation mechanism of lift force between a spherical droplet
and a rigid sphere.

2. Direct numerical simulation
The flow geometry and coordinate system for computations are shown in figure 1.

The ambient flow around a droplet is a linear shear flow. The three-dimensional
Navier–Stokes (NS) equations in cylindrical coordinates are given by

∂U

∂t
+ (V · ∇)U = −∂p

∂x
+

1

Rep,k

∇2U, (2.1)
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Figure 1. Coordinate system for a spherical droplet.

µo 1.82 × 10−5 kgm−1 s−1

µi 8.91 × 10−4 kgm−1 s−1

ρo 1.19 kgm−3

ρi 9.97 × 102 kgm−3

Table 1. Fluid properties.
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The particle Reynolds number Rep(= ρUcd/µ) is based on the mean velocity of the
fluid on the stream through the centre of the droplet, Uc. Here, ρ is the density of
the fluid, d is the diameter of a droplet and µ is the viscosity. The particle Reynolds
number outside a droplet, Rep,o, and the particle Reynolds number inside a droplet,
Rep,i , are not independent, and are related by

Rep,i =
ρi

ρo

µo

µi

Rep,o, (2.4)

where the subscripts o and i indicate the ambient flow outside a droplet and the flow
inside a droplet, respectively. Physical properties of fluids are shown in table 1 and the
fluids outside and inside a droplet correspond to air and water. The capillary number
(= µUc/σ ) and the Weber number (= ρU 2

c d/σ ) of a water droplet in the air flow were
1.0 × 10−3 and 0.30 at maximum. Here, σ denotes the surface tension. From these
values of the capillary and the Weber number, it is understood that the deformation
of the droplet from a spherical shape and the force owing to the deformation are
negligibly small (Wohl & Rubinow 1974; Leal 1980).
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Figure 2. Schematic diagram of computational domains: (a) outside, (b) inside a spherical
droplet.

The NS equations were solved directly using a finite-difference scheme based on
the marker and cell (MAC) method. The numerical procedure used here was first
developed by Hanazaki (1988) and is essentially the same as that used in Komori &
Kurose (1996), Kurose & Komori (1999) and Kurose et al. (2001). The transformed
governing equations were discretized to construct the finite-difference formulation.
The nonlinear terms in NS equations were approximated by a third-order scheme of
Kawamura & Kuwahara (1984), and other spatial derivatives were approximated by a
second-order central difference scheme. The (x, r, θ)-coordinate system was transferred
to the (η, ξ, θ)-coordinate system with an equal spacing. Numerical grids outside and
inside a spherical droplet are shown in figures 2(a) and 2(b). In the present study, the
size of the computational domain was 20 and 10 diameters in the x- and r-directions,
respectively. The size of the computational domain was determined by confirming
that the difference in the computed results between the present size and the size of
50 and 25 diameters in the x- and r-directions is less than 2 % for Rep � 5. It was
also confirmed that the small difference does not affect flow structures and drag and
lift forces. The grid points outside a droplet used in this study were 35 × 61 × 48 in
the η, ξ and θ directions, and the grid points inside a droplet were 35 × 31 × 48. The
grid points were determined by confirming that the difference in the computed results
between the present grid points and the double grid points is less than 2 %.
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The boundary condition of velocity upstream of a spherical droplet was given in a
dimensionless form by

U = 1 + αy. (2.5)

Here, α is the dimensionless fluid shear rate of the mean flow. The velocity condition
at the outer boundary, except the upstream, was given by

∂V
∂x

= 0. (2.6)

The boundary conditions on the surface of a droplet were given by a no mass flow
condition across the interface and continuity of tangential velocities and stresses:

vn,o = vn,i = 0, (2.7)

τnθ,o = τnθ,i , (2.8)

τnφ,o = τnφ,i , (2.9)

vθ,o = vθ,i , (2.10)

vφ,o = vφ,i . (2.11)

Here, the subscript n in the viscous stress τ denotes the normal direction to the
surface of a droplet, and θ and φ show the tangential directions to the surface of a
droplet. Because of the singularity at r = 0 in the cylindrical coordinates, the velocity
at the centre of a spherical droplet was given by

U (x, 0, θ) =
U (x, �r, θ) + U (x, �r, θ + π)

2
. (2.12)

In order to compare the fluid forces acting on a spherical droplet with those on a
rigid sphere, the air velocity field around a rigid sphere was computed by using the
same DNS. In this case, the boundary conditions on the surface of a rigid sphere
were given by a non-slip condition. A rigid sphere was fixed and was not rotated.

The drag and lift forces are the components of the fluid force acting on a spherical
droplet in the streamwise (x) direction and normal (y) direction to the streamwise
direction, FD and FL, and they were computed by integrating the pressure and viscous
stresses over the surface of a spherical droplet:

FD = FD,p + FD,f = ex ·
∫

S

−pen dS + ex ·
∫

S

τ dS, (2.13)

FL = FL,p + FL,f = ey ·
∫

S

−pen dS + ey ·
∫

S

τ dS. (2.14)

Here, ex and ey are the unit vectors in the x- and y-direction. The term en is the unit
normal vector to the surface of a droplet. The first term is the pressure force, while
the second term is the viscous force. The drag and lift coefficients, CD and CL, are
defined by

CD = CD,p + CD,f =
FD,p

1
2
πρoU 2

c (d/2)2
+

FD,f

1
2
πρoU 2

c (d/2)2
, (2.15)

CL = CL,p + CL,f =
FL,p

1
2
πρoU 2

c (d/2)2
+

FL,f

1
2
πρoU 2

c (d/2)2
. (2.16)

Here, CD,p and CD,f are the pressure and viscous drag coefficients and CL,p and CL,f

are the pressure and viscous lift coefficients, respectively. Computations were repeated
with a dimensionless time step of �t =0.005 until almost approaching steady state.
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Figure 3. Velocity fields and streamlines at Rep = 50 and α = 0.0: (a) outside, (b) inside a
spherical droplet.

However, the drag and lift forces acting on a spherical droplet with the high particle
Reynolds number (Rep = 300) were oscillated by the wake due to the flow separation
behind a spherical droplet, and therefore the drag and lift coefficients on a spherical
droplet were estimated by taking the time-averaged value over 40 000 time steps.
Similarly, the drag and lift forces on a rigid sphere were estimated.

The computations for both a spherical droplet and a rigid sphere were performed
for particle Reynolds numbers of Rep = 1, 5, 10, 50, 100 and 300 and for fluid shear
rates of α = 0.0, 0.1, 0.2, 0.3 and 0.4.

3. Results and discussion
3.1. Flow fields outside and inside a spherical droplet

Figure 3 shows the velocity fields and streamlines outside and inside a spherical droplet
in a uniform unsheared flow at Rep = 50 and α = 0.0 on the centreplane (z = 0). It
is found that flow separations appear behind a spherical droplet in the ambient air
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Figure 4. Velocity fields and streamlines (a) outside, (b) inside a spherical droplet and (c) the
contours of the velocity in the streamwise (x) direction inside a spherical droplet at Rep = 50
and α = 0.0 on the (y, z)-plane (x =0). The bold, solid and dotted lines in (c) denote the zero,
positive and negative values of the velocity in the x-direction.

flow, and internal water circulations inside a spherical droplet are generated by the
viscous stress acting on the surface of a droplet. The stagnation points appear at the
upstream end and the downstream end of the droplet surface. Figure 4 shows the
velocity fields and streamlines outside and inside a spherical droplet in a uniform
unsheared flow at Rep = 50 and α = 0.0 on the (y, z)-plane (x = 0). It is found that
streamlines outside and inside a spherical droplet are straight lines normal to the
surface of droplets. This shows that the flow in the angular direction (θ-direction) is
not generated. The flows in the upstream direction are generated in the central region
of a spherical droplet and the flows in the downstream direction are generated near
the surface of a spherical droplet. The contour lines of the velocity in the x-direction
are circular. This shows that the distribution of the velocity in the x-direction inside
a spherical droplet on the (y, z)-plane (x = 0) is axisymmetric. Therefore, both air and
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Figure 5. Velocity fields and streamlines at Rep = 300 and α = 0.0: (a) outside, (b) inside a
spherical droplet.

water flow fields are axisymmetric. Figure 5 shows the velocity fields and streamlines
outside and inside a spherical droplet in a uniform unsheared flow at Rep =300
and α = 0.0 on the centreplane (z = 0). In this case, the vortex shedding appears in
the ambient air flow. Neither air nor water flow fields are axisymmetric. On the
other hand, when we perform a three-dimensional DNS by applying the assumption
of axisymmetric flow used in previous studies (LeClair et al. 1972; Chen 2001),
large internal circulations and small secondary circulations inside a spherical droplet
appear (figure 6). The directions of the large internal circulations and small secondary
circulations are opposite. A similar double-vortex motion inside a droplet has been
reported by LeClair et al. (1972) and Chen (2001). However, our three-dimensional
direct numerical simulation without such an unreal assumption shows that double-
vortex motions inside a spherical droplet can never be generated (see figure 5b).
Figure 7 shows the velocity fields and streamlines outside and inside a spherical
droplet in a uniform unsheared flow at Rep = 300 and α = 0.0 on the (y, z)-plane
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Figure 6. Streamlines inside a spherical droplet at Rep = 300 and α = 0.0 under the
assumption of the axisymmetric flow (LeClair et al. 1972; Chen 2001).
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Figure 7. Velocity fields and streamlines (a) outside, (b) inside a spherical droplet and (c) the
contours of the velocity in the streamwise (x) direction inside a spherical droplet at Rep = 300
and α = 0.0 on the (y, z)-plane (x =0). The bold, solid and dotted lines in (c) denote the zero,
positive and negative value of the velocity in the x-direction.
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Figure 8. Tangential velocity on the surface of a spherical droplet.

(x =0). It is found that streamlines are not straight lines perpendicular to the droplet
surface both outside and inside a spherical droplet. This shows the flows in the
angular direction (θ-direction) are generated both outside and inside a spherical
droplet. The upward flows toward the central region of a droplet are generated at
the central part of a spherical droplet and the downward flows owing to the flows
in the angular direction are also generated near the surface of a spherical droplet.
The flows in the upstream direction are generated in the central region of a spherical
droplet and the flows in the downstream direction are generated near the surface
of a spherical droplet. The contour line of the velocity in the x-direction on the
(y, z)-plane is not the circular shape. This shows the distribution of the velocity in the
x-direction inside a spherical droplet on the (y, z)-plane (x =0) is not axisymmetric.
These three-dimensional flows are quite different from the axisymmetric flow in
figure 4. Figure 8 shows the tangential velocity on the surface of a spherical droplet,
vφ , on the centreplane (z = 0). The values of φ =0 and φ = π correspond to the
upstream end of the droplet surface and the downstream end of the droplet surface,
respectively. Flow fields at Rep = 300 and α = 0.0 are quasi-steady, and therefore the
instantaneous velocities at a time on both the upper and lower surfaces of a droplet
are shown in figure 8. It is found that the surface velocity, vφ , increases with increasing
Rep . Under the assumption of the axisymmetric flow, the opposite tangential surface
velocity caused by secondary circulations appears near φ = π at Rep = 300, as shown
by a solid line. However, such an opposite tangential velocity on both upper and
lower surfaces cannot be found in the present three-dimensional flow.

Figure 9 shows the velocity fields and streamlines outside and inside a spherical
droplet in a linear shear flow at Rep = 50 and α = 0.4 on the centreplane (z = 0). It is
found that the vortex appears on the lower side in the ambient air flow. Flow fields
outside and inside a spherical droplet are three-dimensional, although the symmetry
exists on the (x, z)-plane (y =0) as shown in figure 10. Figure 11 shows the velocity
fields and streamlines outside and inside a spherical droplet in a linear shear flow at
Rep = 300 and α = 0.4 on the centreplane (z = 0). The velocity field and streamlines
are almost similar to those of Rep = 50, although a big difference was observed
between Rep = 50 and 300 in a unsheared flow.
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Figure 9. Velocity fields and streamlines at Rep = 50 and α = 0.4: (a) outside, (b) inside a
spherical droplet.

3.2. Drag coefficient

Figures 12 and 13 show the variations of the drag coefficient, CD , on a rigid sphere and
a spherical droplet in a uniform unsheared flow against the particle Reynolds number,
Rep , respectively. The computed CD on a rigid sphere is compared in figure 12 with the
experimental results for a rigid sphere by Morsi & Alexander (1972). The computed
CD on a spherical droplet is also compared in figure 13 with the experimental results
for a droplet by Beard & Pruppacher (1969) and Gunn & Kinzer (1949). The present
DNS predictions for a rigid sphere and a spherical droplet are in good agreement with
their measurements. This supports the reliability of the present DNS. The oscillation
of drag and lift forces acting on a spherical droplet with the high particle Reynolds
number (Rep = 300) was generated by the wake due to the flow separation behind a
spherical droplet. The time variations of the drag and lift coefficients on a spherical
droplet at Rep =300 and α = 0.0 are shown in figure 14. The CD(t) and CL(t) denote
the instantaneous drag and lift coefficients at a dimensionless time, t , respectively.
The CD and CL are the time-averaged values of drag and lift coefficients, respectively.
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Figure 10. Velocity fields and streamlines on the plane of y = 0 at Rep = 50 and α = 0.4:
(a) outside, (b) inside a spherical droplet.

It is found that the fluctuation of the lift coefficient is stronger than that of the drag
coefficient. The frequencies of the time variations of the drag and lift coefficients due
to the vortex shedding had the same value, and the value of the Strouhal number
based on the vortex-shedding frequency f (St(= df/Uc)) was estimated to be 0.125.
Similarly, the Strouhal number for a rigid sphere was estimated to be the same as for
a spherical droplet. The present value of 0.125 is in quantitative agreement with the
Sakamoto & Haniu’s (1995) experimental result of 0.128 for a rigid sphere. Figure 15
shows the ratio of the drag coefficient on a spherical droplet in a linear shear flow,
CD , to the drag coefficient in a uniform unsheared flow, CD0, against Rep . The ratio,
CD/CD0, increases with increasing the dimensionless shear rate α for a fixed value of
Rep , and the dependence of CD on α is more obvious for higher Rep . To clarify the
difference in the drag between a spherical droplet and a rigid sphere, the ratio of the
drag coefficient on a spherical droplet, CD,d , to that on a rigid sphere, CD,s , is plotted
against Rep in figure 16. The difference in the drag between a spherical droplet and
a rigid sphere is small and it never exceeds 4 %. However, it is obvious that the drag
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Figure 11. Velocity fields and streamlines at Rep = 300 and α = 0.4: (a) outside, (b) inside a
spherical droplet.
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Figure 12. Drag coefficient, CD , on a rigid sphere in a uniform unsheared flow versus the
particle Reynolds number, Rep . —, Morsi & Alexander (1972).
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Figure 13. Drag coefficient, CD , on a spherical droplet in a uniform unsheared flow versus
the particle Reynolds number, Rep . —, Beard & Pruppacher (1969); · · ·, Gunn & Kinzer
(1949).
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Figure 14. The time variations of drag and lift coefficients on a spherical droplet at Rep =
300 and α =0.0; The solid and dashed lines correspond to the drag and lift coefficients,
respectively.
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Figure 15. The ratio of drag coefficient, CD , on a spherical droplet in a linear shear flow to
that in a uniform unsheared flow, CD0, versus the particle Reynolds number, Rep .
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Figure 16. The ratio of drag coefficient on a spherical droplet in a linear shear flow, CD,d ,
to that on a rigid sphere, CD,s , versus the particle Reynolds number, Rep .
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Figure 17. Lift coefficient, CL, on a spherical droplet versus the particle Reynolds
number, Rep .

on a spherical droplet is a little smaller than that on a rigid sphere. In the middle
Reynolds-number region where the drag on a spherical droplet is obviously smaller
than the drag on a rigid sphere, the ratio of the viscous drag on a spherical droplet to
that on a rigid sphere was 0.975, 0.975 and 0.982 at Rep = 5, 10 and 50, respectively.
On the contrary, the ratio of the pressure drag on a spherical droplet to that on a
rigid sphere was 1.02 at Rep = 5, 10 and 50. These show that the decrease of the
drag is caused by the decrease of the viscous drag. The decrease of the viscous drag
is due to the presence of the water flow on the droplet surface (see figure 3).

3.3. Lift coefficient

Figures 17 and 18 show the variations of lift coefficient, CL, on a spherical droplet
and a rigid sphere in a linear shear flow α = 0.0, 0.1, 0.2, 0.3 and 0.4 against the
particle Reynolds number, Rep , respectively. The lift force in a uniform unsheared
flow (α = 0.0) does not appear (CL = 0) in the case of either a spherical droplet or a
rigid sphere. The values of CL on a spherical droplet and a rigid sphere in a linear
shear flow rapidly decrease with increasing Rep in the moderate particle Reynolds-
number range of Rep < 10. In the high particle Reynolds-number range of Rep � 50,



170 K. Sugioka and S. Komori

1.5

1.0

0.5

0

10–1 100 101 102 103

CL

Rep

α = 0
0.1
0.2
0.3
0.4

Figure 18. Lift coefficient, CL, on a rigid sphere versus the particle Reynolds number, Rep .

1.5

1.0

0.5

0

10–1 100 101 102 103

CL

Rep

α = 0.2 : rigid sphere
0.4 : rigid sphere
0.2 : droplet
0.4 : droplet

Figure 19. Lift coefficient, CL, on a spherical droplet and a rigid sphere versus the particle
Reynolds number, Rep .

the computed CL on a spherical droplet and a rigid sphere show small negative
values. The effects of the shear rate α on CL on a spherical droplet and a rigid sphere
increase with increasing α. The behaviour of the lift force on a droplet is similar to
that on a rigid sphere. Figure 19 shows comparisons of the lift coefficient, CL, on a
spherical droplet in a linear shear flow (α = 0.2 and 0.4) with CL on a rigid sphere in
a linear shear flow (α = 0.2 and 0.4). In the low-shear-rate case (α = 0.2), there is no
remarkable difference in CL between a rigid sphere and a spherical droplet. However,
in the high-shear-rate case (α = 0.4), the value of CL on a spherical droplet is much
smaller than that on a rigid sphere at the low particle Reynolds number of Rep = 1.
On the other hand, Legendre & Magnaudet (1997) showed that in the small particle
Reynolds-number region of Rep � 1, the ratio of CL on a water droplet to that on
a rigid sphere is 0.987 irrespective of α. They derived this ratio by using Saffman’s
low-Reynolds-number theory that neglected the advection term of the equation of
motion. However, the present result with a ratio of 0.790 for α =0.4 suggests that
the low-Reynolds-number theory should not be used for estimating the lift force on
a spherical droplet with Rep � 1.
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Figure 20. Viscous lift coefficient on a droplet and a rigid sphere, CL,f , for α = 0.2 and 0.4.

1.5

1.0

0.5

0

10–1 100 101 102 103

CL, p

Rep

α = 0.2 : rigid sphere
0.4 : rigid sphere
0.2 : droplet
0.4 : droplet

Figure 21. Pressure lift coefficient on a droplet and a rigid sphere, CL,p , for α = 0.2 and 0.4.

To clarify the effects of boundary conditions on the spherical surface on CL, the
viscous and pressure lifts, CL,f and CL,p , acting on a spherical droplet are compared
with those acting on a rigid sphere in figures 20 and 21, respectively. The value of
the viscous lift coefficient, CL,f , on a spherical droplet is smaller than that on a rigid
sphere at the low particle Reynolds number of Rep = 1. Figure 22 shows the surface
contours of the y-component of the instantaneous viscous stress on the surface of a
spherical droplet and a rigid sphere in a linear shear flow at Rep = 1 and α = 0.4
together with ambient velocity field and streamlines. The decrease of the viscous lift
on a droplet can be understood from the decrease of the viscous lift in the upper part
of the droplet. Figure 23 shows the velocity fields and streamlines outside and inside
a spherical droplet in a linear shear flow at Rep = 1 and α =0.4 on the centreplane
(z = 0). Near the upper surface of the droplet, the direction of the water flow inside
a spherical droplet is the same as the direction of the air flow outside a spherical
droplet. Therefore, the decrease of viscous lift is caused by the tangential velocity on
the droplet surface. On the contrary, the value of the pressure lift coefficient, CL,p ,
on a spherical droplet is larger than that on a rigid sphere (figure 21). This can be
explained from figure 24 which shows the surface contours of the y-component of
the instantaneous pressure on the surface of a spherical droplet and a rigid sphere
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(a)

(b)

Figure 22. Surface contours of the y-component of the viscous stress acting on a droplet and
a rigid sphere at Rep = 1 and α = 0.4 with ambient velocity field and streamlines: (a) droplet;
(b) rigid sphere. The red and blue indicate high and low values of the viscous stress.

in a linear shear flow at Rep = 1 and α = 0.4 together with ambient velocity field
and streamlines. That is, the tangential velocity on the droplet surface promotes the
pressure difference between the higher fluid velocity side and the lower fluid velocity
side.

4. Conclusions
A three-dimensional direct numerical simulation was first performed for a linear

shear flow outside and inside a spherical droplet with a high particle Reynolds
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(a)

x

y
(b)

Figure 23. Velocity fields and streamlines at Rep = 1 and α = 0.4: (a) outside, (b) inside a
spherical droplet.

number, and the effects of fluid shear on drag and lift forces were investigated by
comparing it with the DNS predictions of a rigid sphere. The main results from this
study can be summarized as follows.

The velocity field inside a droplet is not axisymmetric at high particle Reynolds
numbers, and therefore a rough assumption of axial symmetry used in the previous
studies is unacceptable.

The drag coefficient on a spherical droplet increases with increasing shear rate
for a fixed value of the particle Reynolds number, and the dependence of the drag
coefficient on the shear rate is more obvious for higher particle Reynolds numbers.
The difference in the drag between a spherical droplet and a rigid sphere in a linear
shear flow never exceeds 4 %, but the drag on a spherical droplet is a little smaller
than that on a rigid sphere.

The lift coefficient on a spherical droplet decreases with increasing particle Reynolds
number, and it acts from the high-speed side to the low-speed side in the linear shear
flow with the high particle Reynolds number of Rep � 50. The behaviour of the lift
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(a)

(b)

Figure 24. Surface contours of the y-component of the pressure acting on a droplet and a
rigid sphere at Rep = 1 and α = 0.4 with ambient velocity field and streamlines: (a) droplet;
(b) rigid sphere. The red and blue indicate high and low values of the pressure.

force on a spherical droplet is similar to that on a rigid sphere. In the low particle
Reynolds-number region of Rep ≈ 1 with high shear rate, the lift force on a spherical
droplet is smaller than that on a rigid sphere. The difference is attributed to the
decrease of the viscous lift and the increase of the pressure lift on a spherical droplet
that are caused by the water flow inside a spherical droplet.
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